Book:Leonard Eugene Dickson/History of the Theory of Numbers/Volume I
Jump to navigation
Jump to search
Leonard Eugene Dickson: History of the Theory of Numbers, Volume $\text { I: Divisibility and Primality }$
Published $\text {1919}$, AMS Chelsea
- ISBN 0-8218-1934-8
Subject Matter
Contents
- PREFACE
- Chapter.
- $\text{I}$. Perfect, multiply perfect and amicable numbers
- $\text{II}$. Formulas for the number and sum of divisors, problems of Fermat and Wallis
- $\text{III}$. Fermat's and Wilson's theorems, generalizations and converses; symmetric functions of $1, 2, \ldots, p - 1$, modulo $p$
- $\text{IV}$. Residue of $\paren {u^{p - 1} - 1} / p$ modulo $p$
- $\text{V}$. Euler's $\phi$-function, generalizations; Farey series
- $\text{VI}$. Periodic decimal fractions; periodic fractions; factors of $10^n \pm 1$
- $\text{VII}$. Primitive roots, exponents, indices, binomial congruences
- $\text{VIII}$. Higher congruences
- $\text{IX}$. Divisibility of factorials and multinomial coefficients
- $\text{X}$. Sum and number of divisors
- $\text{XI}$. Miscellaneous theorems on divisibility, greatest common divisor, least common multiple
- $\text{XII}$. Criteria for divisibility by a given number
- $\text{XIII}$. Factor tables, lists of primes
- $\text{XIV}$. Methods of factoring
- $\text{XV}$. Fermat numbers $F_n = 2^{2^n} + 1$
- $\text{XVI}$. Factors of $a^n \pm b^n$
- $\text{XVII}$. Recurring series; Lucas' $u_n, v_n$
- $\text{XVIII}$. Theory of prime numbers
- $\text{XIX}$. Inversion of functions; Möbius function $\map \mu n$, numerical integrals and derivatives
- $\text{XX}$. Properties of the digits of numbers
- Author index
- Subject index
Source work progress
- 1919: Leonard Eugene Dickson: History of the Theory of Numbers: Volume $\text { I }$ ... (previous) ... (next): Preface