Borel-TIS inequality
Jump to navigation
Jump to search
![]() | This article needs to be linked to other articles. In particular: throughout, including category, source of name, and all definitions You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
![]() | It has been suggested that this page be renamed. To discuss this page in more detail, feel free to use the talk page. |
Theorem
Let $T$ be a topological space.
Let $\sequence {f_t}_{t \mathop \in T}$ be a centred (i.e. mean zero) Gaussian process on $T$, such that:
- $\norm f_T := \sup_{t \mathop \in T} \size {f_t}$
is almost surely finite.
Let:
- $\sigma_T^2 := \sup_{t \mathop \in T} \operatorname E \size {f_t}^2$
Then $\map {\operatorname E} {\norm f_T}$ and $\sigma_T$ are both finite, and, for each $u > 0$:
- $\map {\operatorname P} {\norm f_T > \map {\operatorname E} {\norm f_T} + u} \le \map \exp {\dfrac {-u^2} {2 \sigma_T^2} }$
Proof
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |