Bound for Negative Part of Pointwise Sum of Functions

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X$ be a set.

Let $f, g : X \to \overline \R$ be extended real-valued function.

Suppose that the pointwise sum $f + g$ is well-defined, that is:

there exists no $x \in X$ such that $\set {\map f x, \map g x} = \set {\infty, -\infty}$.


Then:

$\paren {f + g}^- \le f^- + g^-$

where $\paren {f + g}^-$, $f^-$ and $g^-$ denote the negative parts of $f + g$, $f$ and $g$ respectively.


Proof

Let $x \in X$.

From the definition of the negative part, we have:

$\map {f^-} x = -\min \set {\map f x, 0}$

and:

$\map {g^-} x = -\min \set {\map g x, 0}$


Suppose first that $\map f x$ and $\map g x$ are finite.

From Minimum Function in terms of Absolute Value, we then have:

$\ds \map {f^-} x = \frac {\size {\map f x} - \map f x} 2$

and:

$\ds \map {g^-} x = \frac {\size {\map g x} - \map g x} 2$

We then have:

\(\ds \map {\paren {f + g}^-} x\) \(=\) \(\ds -\min \set {\map f x + \map g x, 0}\) Definition of Negative Part
\(\ds \) \(=\) \(\ds \frac {\size {\map f x + \map g x} - \paren {\map f x + \map g x} } 2\) Minimum Function in terms of Absolute Value
\(\ds \) \(\le\) \(\ds \frac {\size {\map f x} + \size {\map g x} - \paren {\map f x + \map g x} } 2\) Triangle Inequality
\(\ds \) \(=\) \(\ds \frac {\size {\map f x} - \map f x} 2 + \frac {\size {\map g x} - \map g x} 2\)
\(\ds \) \(=\) \(\ds \map {f^-} x + \map {g^-} x\)


Now suppose that $\map f x = +\infty$.

Then $\map g x > -\infty$.

We then have:

$\map f x + \map g x = +\infty$

So:

$\map {\paren {f + g}^-} x = 0$

and:

$\map {f^-} x = 0$

Since:

$\map {g^-} x \ge 0$

we have that:

$\map {\paren {f + g}^-} x \le \map {f^-} x + \map {g^-} x$

Swapping $f$ for $g$, we also get the result if $\map g x = +\infty$ and $\map f x > -\infty$.


Now suppose that $\map f x = -\infty$

Then $\map g x < \infty$.

Then:

$\map f x + \map g x = -\infty$

So:

$\map {\paren {f + g}^-} x = \infty$

and:

$\map {f^-} x = \infty$

So the inequality:

$\map {\paren {f + g}^-} x \le \map {f^-} x + \map {g^-} x$

holds trivially.

Swapping $f$ for $g$, we also get the result if $\map g x = -\infty$ and $\map f x < \infty$.

$\blacksquare$