# Bounded Linear Operator on Hilbert Space Direct Sum

## Theorem

Let $\sequence {H_n}_{n \mathop \in \N}$ be a sequence of Hilbert spaces.

Denote by $H = \ds \bigoplus_{n \mathop = 1}^\infty H_n$ their Hilbert space direct sum.

For each $n \in \N$, let $T_n \in \map B {H_n}$ be a bounded linear operator.

Suppose that one has $\ds \sup_{n \mathop \in \N} \norm {T_n} < \infty$, where $\norm {\, \cdot \,}$ signifies the norm on bounded linear operators.

Define $T: H \to H$ by:

$\forall h = \sequence {h_n}_{n \mathop \in \N}: T h = \sequence {T_n h_n}_{n \mathop \in \N} \in H$

Then $T \in \map B H$ is a bounded linear operator.

## Proof

Let $c = \ds \sup_{n \mathop \in \N} \, \norm {T_n}$.

By assumption, $c < \infty$.

Let $h = \sequence {h_n}_{n \mathop \in \N} \in H$ be arbitrary.

Then:

 $\ds \norm {T h}_H^2$ $=$ $\ds \norm {\sequence {T_n h_n}_{n \mathop \in \N} }_H^2$ Definition of $T$ $\ds$ $=$ $\ds \sum_{n \mathop = 1}^\infty \norm {T_n h_n}_{H_n}^2$ Definition of $\norm {\, \cdot \,}_H$ $\ds$ $\le$ $\ds \sum_{n \mathop = 1}^\infty \norm {T_n}^2 \norm {h_n}_{H_n}^2$ $\ds$ $\le$ $\ds \sum_{n \mathop = 1}^\infty c^2 \norm {h_n}_{H_n}^2$ $\ds$ $=$ $\ds c^2 \sum_{n \mathop = 1}^\infty \norm {h_n}_{H_n}^2$ $\ds$ $=$ $\ds c^2 \norm h_H^2$

In summary:

$\norm {T h}_H^2 \le c^2 \norm h_H^2$

It follows that $T$ is bounded.

$\blacksquare$