# Bounds for Finite Product of Real Numbers

Jump to navigation
Jump to search

## Theorem

Let $a_1, a_2, \ldots, a_n$ be positive real numbers.

Then:

- $\ds \sum_{k \mathop = 1}^n a_k \le \prod_{k \mathop = 1}^n \paren {1 + a_k} \le \map \exp {\sum_{k \mathop = 1}^n a_k}$

## Proof

### Lower bound

Follows by expanding.

$\Box$

### Upper Bound

#### Proof 1

By Exponential of x not less than 1+x:

- $\ds \prod_{k \mathop = 1}^n \paren {1 + a_k} \le \prod_{k \mathop = 1}^n \exp a_k = \map \exp {\sum_{k \mathop = 1}^n a_k}$

$\blacksquare$

#### Proof 2

By the AM-GM Inequality:

- $\ds \prod_{k \mathop = 1}^n \paren {1 + a_k} \le \paren {\frac {n + \sum_{k \mathop = 1}^n a_k} n}^n$

$\blacksquare$