Brahmagupta-Fibonacci Identity/Extension/Proof 3
Jump to navigation
Jump to search
Extension to Brahmagupta-Fibonacci Identity
Let $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ be integers.
Then:
- $\ds \prod_{j \mathop = 1}^n \paren { {a_j}^2 + {b_j}^2} = c^2 + d^2$
where $c, d \in \Z$.
That is: the product of any number of sums of two squares is also a sum of two squares.
Proof
Let $z_j = a_j + i b_j$ for each $j = 1, 2, \ldots, n$.
Let $\ds c + i d = \prod_{j \mathop = 1}^n z_j$.
Then:
\(\ds c + i d\) | \(=\) | \(\ds \prod_{j \mathop = 1}^n z_j\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \prod_{j \mathop = 1}^n \paren {a_j + i b_j}\) |
As $a_1, a_2, \ldots, a_n$ and $b_1, b_2, \ldots, b_n$ are integers, so are $c$ and $d$.
Thus:
\(\ds c^2 + d^2\) | \(=\) | \(\ds \cmod {c + i d}^2\) | Definition of Complex Modulus | |||||||||||
\(\ds \) | \(=\) | \(\ds \cmod {\prod_{j \mathop = 1}^n z_j}^2\) | $\ds c + i d = \prod_{j \mathop = 1}^n z_j$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \prod_{j \mathop = 1}^n \cmod {z_j}^2\) | Complex Modulus of Product of Complex Numbers: General Result | |||||||||||
\(\ds \) | \(=\) | \(\ds \prod_{j \mathop = 1}^n \cmod {a_j + i b_j}^2\) | $z_j = a_j + i b_j$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \prod_{j \mathop = 1}^n \paren { {a_j}^2 + {b_j}^2}\) | Definition of Complex Modulus |
$\blacksquare$
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Supplementary Problems: Miscellaneous Problems: $142$