Brahmagupta-Fibonacci Identity/General
Jump to navigation
Jump to search
General version of Brahmagupta-Fibonacci Identity
Let $a, b, c, d, n$ be numbers.
- $\paren {a^2 + n b^2} \paren {c^2 + n d^2} = \paren {a c + n b d}^2 + n \paren {a d - b c}^2$
Corollary
- $\paren {a^2 + n b^2} \paren {c^2 + n d^2} = \paren {a c - n b d}^2 + n \paren {a d + b c}^2$
Extension
Let $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n, m$ be integers.
Then:
- $\ds \prod_{j \mathop = 1}^n \paren { {a_j}^2 + m {b_j}^2} = c^2 + m d^2$
for some $c, d \in \Z$.
That is: the set of all integers of the form $a^2 + m b^2$ is closed under multiplication.
Proof
\(\ds \) | \(\) | \(\ds \paren {a c + n b d}^2 + n \paren {a d - b c}^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\paren {a c}^2 + 2 \paren {a c} \paren {n b d} + \paren {n b d}^2} + n \paren {\paren {a d}^2 - 2 \paren {a b} \paren {c d} + \paren {b c}^2}\) | Square of Sum, Square of Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds a^2 c^2 + 2 n a b c d + n^2 b^2 d^2 + n a^2 d^2 - 2 n a b c d + n b^2 c^2\) | multiplying out | |||||||||||
\(\ds \) | \(=\) | \(\ds a^2 c^2 + n a^2 d^2 + n b^2 c^2 + n^2 b^2 d^2\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a^2 + n b^2} \paren {c^2 + n d^2}\) |
$\blacksquare$
Source of Name
This entry was named for Brahmagupta and Leonardo Fibonacci.