# Brouwer's Fixed Point Theorem/One-Dimensional Version/Proof Using Connectedness

## Theorem

Let $f: \closedint a b \to \closedint a b$ be a real function which is continuous on the closed interval $\closedint a b$.

Then:

- $\exists \xi \in \closedint a b: \map f \xi = \xi$

That is, a continuous real function from a closed real interval to itself fixes some point of that interval.

## Proof

By Subset of Real Numbers is Interval iff Connected, $\left[{a \,.\,.\, b}\right]$ is connected.

Aiming for a contradiction, suppose there is no fixed point.

Then $f \left({a}\right) > a$ and $f \left({b}\right) < b$.

Let:

- $U = \left\{ {x \in \left[{a \,.\,.\, b}\right]: f \left({x}\right) > x}\right\}$
- $V = \left\{ {x \in \left[{a \,.\,.\, b}\right]: f \left({x}\right) < x}\right\}$

Then $U$ and $V$ are open in $\left[{a \,.\,.\, b}\right]$.

Because $a \in U$ and $b\in V$, $U$ and $V$ are non-empty.

By assumption:

- $U \cup V = \left[{a \,.\,.\, b}\right]$

Thus $\left[{a \,.\,.\, b}\right]$ is not connected, which is a contradiction.

Thus, by Proof by Contradiction, there exists at least one fixed point.

$\blacksquare$