C^k Norm is Norm

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $I = \closedint a b$ be a closed real interval.

Let $\struct {\map {C^k} I, +, \, \cdot \,}_\R$ be the vector space of real-valued functions, k-times differentiable on $I$.

Let $x \in \map {C^k} I$ be a real-valued function of differentiability class $k$.

Let $\norm {\, \cdot \,}_{\map {C^k} I}$ be the $C^k$ norm on $I$.


Then $\norm {\, \cdot \,}_{\map {C^k} I}$ is a norm on $\struct {\map {C^k} I, +, \, \cdot \,}_\R$.


Proof

Positive definiteness

Let $x \in \map {C^k} I$.

Then:

\(\ds \norm x_{\map {C^k} I}\) \(=\) \(\ds \sum_{i \mathop = 0}^k \norm {x^{\paren i} }_\infty\)
\(\ds \) \(\ge\) \(\ds \sum_{i \mathop = 0}^k 0\) Supremum Norm is Norm, Norm Axiom $\text N 1$: Positive Definiteness
\(\ds \) \(=\) \(\ds 0\)

Suppose $\norm x_{\map {C^k} I} = 0$.

We have that the sum of non-negatives is zero if every element is zero.

Hence:

$\forall i \in \N : 0 \le i \le k : \norm {x^{\paren i} }_\infty = 0$

That is:

$\norm x_\infty = 0$

By Supremum Norm is Norm and Norm Axiom $\text N 1$: Positive Definiteness:

$\forall t \in I : \map x t = 0$


Positive homogeneity

Let $x \in \map {C^k} I$, $\alpha \in \R$.

Then:

\(\ds \norm {\alpha x}_{\map {C^k} I}\) \(=\) \(\ds \sum_{i \mathop = 0}^k \norm {\paren {\alpha x}^{\paren i} }_\infty\) Definition of C^k Norm
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 0}^k \norm {\alpha x^{\paren i} }_\infty\) Definition of Pointwise Scalar Multiplication of Real-Valued Functions
\(\ds \) \(=\) \(\ds \size \alpha \sum_{i \mathop = 0}^k \norm {x^{\paren i} }_\infty\) Supremum norm on continuous real-valued functions is a norm: positive homogeneity
\(\ds \) \(=\) \(\ds \size \alpha \norm x_{\map {C^k} I}\) Definition of C^k Norm


Triangle inequality

Let $x, y \in \map {C^k} I$

\(\ds \norm {x + y}_{\map {C^k} I}\) \(=\) \(\ds \sum_{i \mathop = 0}^k \norm {\paren {x + y}^{\paren i} }_\infty\) Definition of Pointwise Addition of Real-Valued Functions
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 0}^k \norm {x^{\paren i} + y^{\paren i} }_\infty\) Definition of Pointwise Addition of Real-Valued Functions
\(\ds \) \(\le\) \(\ds \sum_{i \mathop = 0}^k \norm {x^{\paren i} }_\infty + \sum_{i \mathop = 0}^k \norm {y^{\paren i} }_\infty\) Supremum Norm is Norm, Norm Axiom $\text N 3$: Triangle Inequality
\(\ds \) \(=\) \(\ds \norm x_{\map {C^k} I} + \norm y_{\map {C^k} I}\) Definition of C^k Norm

$\blacksquare$


Also see


Sources