Cancellation Property of Product Inverse Operator

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ}$ be a group whose identity is $e$.

Let $\oplus: G \times G \to G$ be the product inverse of $\circ$ on $G$.

Then:

$\forall x, y, z \in G: \paren {x \oplus z} \oplus \paren {y \oplus z} = x \oplus y$


Proof

\(\ds \forall x, y, z \in G: \, \) \(\ds \paren {x \oplus z} \oplus \paren {y \oplus z}\) \(=\) \(\ds \paren {x \circ z^{-1} } \oplus \paren {y \circ z^{-1} }\) Definition of Product Inverse Operation
\(\ds \) \(=\) \(\ds \paren {x \circ z^{-1} } \circ \paren {y \circ z^{-1} }^{-1}\) Definition of Product Inverse Operation
\(\ds \) \(=\) \(\ds \paren {x \circ z^{-1} } \circ \paren {z \circ y^{-1} }\) Inverse of Group Product
\(\ds \) \(=\) \(\ds x \circ \paren {z^{-1} \circ z} \circ y^{-1}\) Group Axiom $\text G 1$: Associativity
\(\ds \) \(=\) \(\ds x \circ e \circ y^{-1}\) Group Axiom $\text G 3$: Existence of Inverse Element
\(\ds \) \(=\) \(\ds x \circ y^{-1}\) Group Axiom $\text G 2$: Existence of Identity Element
\(\ds \) \(=\) \(\ds x \oplus y\) Definition of Product Inverse Operation

$\blacksquare$


Sources