Canonical P-adic Expansion of Rational is Eventually Periodic/Lemma 11
Jump to navigation
Jump to search
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $p$ be a prime number.
Let $a \in \Z, b \in Z_{> 0}$
Let:
- $\forall n \in \N: \exists r_n \in \Z : \dfrac a b - \paren{p^{n + 1} \dfrac {r_n} b} \in \set{0, 1, \ldots, p^{n + 1} - 1}$
Then:
- $\forall n \in \N : \dfrac {a - \paren {p^{n + 1} - 1} b } {p^{n + 1} } \le r_n \le \dfrac a {p^{n + 1} }$
Proof
We have:
\(\ds 0\) | \(\le\) | \(\, \ds \dfrac a b - \paren{p^{n + 1} \dfrac {r_n} b} \, \) | \(\, \ds \le \, \) | \(\ds p^{n + 1} - 1\) | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds -\paren {p^{n + 1} - 1}\) | \(\le\) | \(\, \ds \paren{p^{n + 1} \dfrac {r_n} b} - \dfrac a b \, \) | \(\, \ds \le \, \) | \(\ds 0\) | |||||||||
\(\ds \leadsto \ \ \) | \(\ds -\paren {p^{n + 1} - 1} b\) | \(\le\) | \(\, \ds p^{n + 1} r_n - a \, \) | \(\, \ds \le \, \) | \(\ds 0\) | |||||||||
\(\ds \leadsto \ \ \) | \(\ds a - \paren {p^{n + 1} - 1} b\) | \(\le\) | \(\, \ds p^{n + 1} r_n \, \) | \(\, \ds \le \, \) | \(\ds a\) | |||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac {a - \paren {p^{n + 1} - 1} b} {p^{n + 1} }\) | \(\le\) | \(\, \ds r_n \, \) | \(\, \ds \le \, \) | \(\ds \dfrac a {p^{n + 1} }\) |
The result follows.
$\blacksquare$