Capelli's Sum

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \paren {x + y}^{\overline n} = \sum_k \binom n k x^{\overline k} y^{\overline {n - k} }$

where:

$\dbinom n k$ denotes a binomial coefficient
$x^{\overline k}$ denotes $x$ to the $k$ rising.


Proof

The proof proceeds by induction on $n$.


For all $n \in \Z_{> 0}$, let $\map P n$ be the proposition:

$\ds \paren {x + y}^{\overline n} = \sum_k \binom n k x^{\overline k} y^{\overline {n - k} }$


Basis for the Induction

$\map P 1$ is the case:

\(\ds \paren {x + y}^{\overline 1}\) \(=\) \(\ds x^{\overline 1} + y^{\overline 1}\) Number to Power of One Rising is Itself
\(\ds \) \(=\) \(\ds x^{\overline 0} y^{\overline 1} + x^{\overline 1} y^{\overline 0}\) Number to Power of Zero Rising is One
\(\ds \) \(=\) \(\ds \binom 1 0 x^{\overline 0} y^{\overline 1} + \binom 1 1 x^{\overline 1} y^{\overline 0}\) One Choose n
\(\ds \) \(=\) \(\ds \sum_k \binom 1 k x^{\overline k} y^{\overline {1 - k} }\)

Thus $\map P 1$ is seen to hold.


This is the basis for the induction.


Induction Hypothesis

Now it needs to be shown that, if $\map P m$ is true, where $m \ge 1$, then it logically follows that $\map P {m + 1}$ is true.


So this is the induction hypothesis:

$\ds \paren {x + y}^{\overline m} = \sum_k \binom m k x^{\overline k} y^{\overline {m - k} }$


from which it is to be shown that:

$\ds \paren {x + y}^{\overline {m + 1} } = \sum_k \binom {m + 1} k x^{\overline k} y^{\overline {m + 1 - k} }$


Induction Step

This is the induction step:

\(\ds \paren {x + y}^{\overline {m + 1} }\) \(=\) \(\ds \paren {x + y}^{\overline m} \paren {x + y + m}\) Definition of Rising Factorial
\(\ds \) \(=\) \(\ds \paren {\sum_k \binom m k x^{\overline k} y^{\overline {m - k} } } \paren {x + y + m}\) Induction Hypothesis
\(\ds \) \(=\) \(\ds \paren {\sum_k \binom m k x^{\overline k} y^{\overline {m - k} } } \paren {x + k + y + m - k}\)
\(\ds \) \(=\) \(\ds \sum_k \binom m k x^{\overline k} \paren {x + k} y^{\overline {m - k} } + \sum_k \binom m k x^{\overline k} y^{\overline {m - k} } \paren {y + m - k}\)
\(\ds \) \(=\) \(\ds \sum_k \binom m k x^{\overline {k + 1} } y^{\overline {m - k} } + \sum_k \binom m k x^{\overline k} y^{\overline {m - k + 1} }\) Definition of Rising Factorial
\(\ds \) \(=\) \(\ds \sum_k \binom m k x^{\overline {k + 1} } y^{\overline {m - k} } + \sum_k \binom m {k + 1} x^{\overline {k + 1} } y^{\overline {m - k} }\) Translation of Index Variable of Summation
\(\ds \) \(=\) \(\ds \sum_k \binom {m + 1} k x^{\overline {k + 1} } y^{\overline {m - k} }\) Pascal's Rule

So $\map P m \implies \map P {m + 1}$ and the result follows by the Principle of Mathematical Induction.


Therefore:

$\ds \forall n \in \Z_{> 0}: \paren {x + y}^{\overline n} = \sum_k \binom n k x^{\overline k} y^{\overline {n - k} }$


$\blacksquare$


Source of Name

This entry was named for Alfredo Capelli.


Sources