Cardinality of Cartesian Product/General Result
Jump to navigation
Jump to search
Theorem
Let $\ds \prod_{k \mathop = 1}^n S_k$ be the cartesian product of a (finite) sequence of sets $\sequence {S_n}$.
Then:
- $\ds \card {\prod_{k \mathop = 1}^n S_k} = \prod_{k \mathop = 1}^n \card {S_k}$
This can also be written:
- $\card {S_1 \times S_2 \times \ldots \times S_n} = \card {S_1} \times \card {S_2} \times \ldots \times \card {S_n}$
Corollary
Let $S^n$ be a cartesian space.
Then:
- $\card {S^n} = \card S^n$