Cartesian Product is Small

From ProofWiki
Jump to: navigation, search


Let $a$ and $b$ be small classes.

Then their Cartesian product $\left({a \times b}\right)$ is small:

$\mathscr M \left({a \times b}\right)$


\(\displaystyle \left({a \times b}\right)\) \(=\) \(\displaystyle \left\{ {\left({x, y}\right) : x \in a \land y \in b}\right\}\) $\quad$ Definition of Cartesian Product $\quad$
\(\displaystyle \) \(=\) \(\displaystyle \left\{ {\left({x, y}\right) : \left\{ {x}\right\} \subseteq a \land \left\{ {y}\right\} \subseteq b} \right\}\) $\quad$ Singleton of Element is Subset $\quad$
\(\displaystyle \) \(\subseteq\) \(\displaystyle \left\{ {\left({x, y}\right) : \left\{ {x, y}\right\} \subseteq \left({a \cup b}\right)}\right\}\) $\quad$ Set Union Preserves Subsets $\quad$
\(\displaystyle \) \(\subseteq\) \(\displaystyle \left\{ {\left({x, y}\right) : \left({x, y}\right) \subseteq \mathcal P \left({a \cup b}\right)}\right\}\) $\quad$ Power Set of Subset and Subset Relation is Transitive $\quad$

So by the definition of power set:

$\left({a \times b}\right) \subseteq \mathcal P \left({\mathcal P \left({a \cup b}\right)}\right)$

By Union of Small Classes is Small, $\left({a \cup b}\right)$ is small.

By the Axiom of Powers, $\mathcal P \left({\mathcal P \left({a \cup b}\right)}\right)$ is small.

By Axiom of Subsets Equivalents, $\left({a \times b}\right)$ is small.