Cartesian Product is Small

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$ and $b$ be small classes.


Then their Cartesian product $\left({a \times b}\right)$ is small:

$\mathscr M \left({a \times b}\right)$


Proof

\(\displaystyle \left({a \times b}\right)\) \(=\) \(\displaystyle \left\{ {\left({x, y}\right) : x \in a \land y \in b}\right\}\) Definition of Cartesian Product
\(\displaystyle \) \(=\) \(\displaystyle \left\{ {\left({x, y}\right) : \left\{ {x}\right\} \subseteq a \land \left\{ {y}\right\} \subseteq b} \right\}\) Singleton of Element is Subset
\(\displaystyle \) \(\subseteq\) \(\displaystyle \left\{ {\left({x, y}\right) : \left\{ {x, y}\right\} \subseteq \left({a \cup b}\right)}\right\}\) Set Union Preserves Subsets
\(\displaystyle \) \(\subseteq\) \(\displaystyle \left\{ {\left({x, y}\right) : \left({x, y}\right) \subseteq \mathcal P \left({a \cup b}\right)}\right\}\) Power Set of Subset and Subset Relation is Transitive



So by the definition of power set:

$\left({a \times b}\right) \subseteq \mathcal P \left({\mathcal P \left({a \cup b}\right)}\right)$


By Union of Small Classes is Small, $\left({a \cup b}\right)$ is small.


By the Axiom of Powers, $\mathcal P \left({\mathcal P \left({a \cup b}\right)}\right)$ is small.


By Axiom of Subsets Equivalents, $\left({a \times b}\right)$ is small.

$\blacksquare$


Sources