Category:Abel's Lemma
Jump to navigation
Jump to search
This category contains pages concerning Abel's Lemma:
Let $\sequence a$ and $\sequence b$ be sequences in an arbitrary ring $R$.
Formulation 1
- $\ds \sum_{k \mathop = m}^n a_k \paren {b_{k + 1} - b_k} = a_{n + 1} b_{n + 1} - a_m b_m - \sum_{k \mathop = m}^n \paren {a_{k + 1} - a_k} b_{k + 1}$
Formulation 2
Let $\ds A_n = \sum_{i \mathop = m}^n {a_i}$ be the partial sum of $\sequence a$ from $m$ to $n$.
Then:
- $\ds \sum_{k \mathop = m}^n a_k b_k = \sum_{k \mathop = m}^{n - 1} A_k \paren {b_k - b_{k + 1} } + A_n b_n$
Source of Name
This entry was named for Niels Henrik Abel.
Pages in category "Abel's Lemma"
The following 13 pages are in this category, out of 13 total.
A
- Abel's Lemma
- Abel's Lemma/Also known as
- Abel's Lemma/Formulation 1
- Abel's Lemma/Formulation 1/Corollary
- Abel's Lemma/Formulation 2
- Abel's Lemma/Formulation 2/Corollary
- Abel's Lemma/Formulation 2/Proof 1
- Abel's Lemma/Formulation 2/Proof 2
- Abel's Lemma: Formulation 1
- Abel's Lemma: Formulation 2
- Abel's Partial Summation Formula
- Abel's Transformation