# Category:Auxiliary Relations

Jump to navigation
Jump to search

This category contains results about Auxiliary Relations.

Let $L = \left({S, \vee, \preceq}\right)$ be a bounded below join semilattice.

Let $\mathcal R \subseteq S \times S$ be a relation on $S$.

Then $\mathcal R$ is an **auxiliary relation** if and only if

\((1)\) | $:$ | \(\displaystyle \forall x, y \in S:\) | \(\displaystyle \left({x, y}\right) \in \mathcal R \implies x \preceq y \) | |||||

\((2)\) | $:$ | \(\displaystyle \forall x, y, z, u \in S:\) | \(\displaystyle x \preceq y \land \left({y, z}\right) \in \mathcal R \land z \preceq u \implies \left({x, u}\right) \in \mathcal R \) | |||||

\((3)\) | $:$ | \(\displaystyle \forall x, y, z \in S:\) | \(\displaystyle \left({x, z}\right) \in \mathcal R \land \left({y, z}\right) \in \mathcal R \implies \left({x \vee y, z}\right) \in \mathcal R \) | |||||

\((4)\) | $:$ | \(\displaystyle \forall x \in S:\) | \(\displaystyle \left({\bot, x}\right) \in \mathcal R \) |

## Pages in category "Auxiliary Relations"

The following 21 pages are in this category, out of 21 total.