Category:Bézout's Identity

From ProofWiki
Jump to navigation Jump to search

This category contains pages concerning Bézout's Identity:

Let $a, b \in \Z$ such that $a$ and $b$ are not both zero.

Let $\gcd \set {a, b}$ be the greatest common divisor of $a$ and $b$.


$\exists x, y \in \Z: a x + b y = \gcd \set {a, b}$

That is, $\gcd \set {a, b}$ is an integer combination (or linear combination) of $a$ and $b$.

Furthermore, $\gcd \set {a, b}$ is the smallest positive integer combination of $a$ and $b$.