# Category:Complementary Error Function

Jump to navigation
Jump to search

This category contains results about the complementary error function.

The **complementary error function** is the real function $\erfc: \R \to \R$:

\(\displaystyle \map {\erfc} x\) | \(=\) | \(\displaystyle 1 - \map \erf x\) | where $\erf$ denotes the Error Function | ||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle 1 - \dfrac 2 {\sqrt \pi} \int_0^x \map \exp {-t^2} \rd t\) | where $\exp$ denotes the Real Exponential Function | ||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle \dfrac 2 {\sqrt \pi} \int_x^\infty \map \exp {-t^2} \rd t\) |

## Pages in category "Complementary Error Function"

The following 4 pages are in this category, out of 4 total.