Category:Complementary Error Function
Jump to navigation
Jump to search
This category contains results about the complementary error function.
The complementary error function is the real function $\erfc: \R \to \R$:
\(\ds \map {\erfc} x\) | \(=\) | \(\ds 1 - \map \erf x\) | where $\erf$ denotes the Error Function | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 - \dfrac 2 {\sqrt \pi} \int_0^x \map \exp {-t^2} \rd t\) | where $\exp$ denotes the Real Exponential Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 2 {\sqrt \pi} \int_x^\infty \map \exp {-t^2} \rd t\) |
Pages in category "Complementary Error Function"
The following 4 pages are in this category, out of 4 total.