Category:Definitions/Antilexicographic Order

From ProofWiki
Jump to navigation Jump to search

This category contains definitions related to Antilexicographic Order.
Related results can be found in Category:Antilexicographic Order.


Let $\struct {S_1, \preccurlyeq_1}$ and $\struct {S_2, \preccurlyeq_2}$ be ordered sets.

The antilexicographic order $\struct {S_1, \preccurlyeq_1} \otimes^a \struct {S_2, \preccurlyeq_2}$ on $\struct {S_1, \preccurlyeq_1}$ and $\struct {S_2, \preccurlyeq_2}$ is the ordered set $\struct {T, \preccurlyeq_a}$ where:

$T := S_1 \times S_2$, that is, the Cartesian product of $S_1$ and $S_2$
$\preccurlyeq_a$ is the relation defined on $T$ as:
$\tuple {x_1, x_2} \preccurlyeq_a \tuple {y_1, y_2} \iff \tuple {x_2 \prec_2 y_2} \lor \paren {x_2 = y_2 \land x_1 \preccurlyeq_1 y_1}$