Category:Definitions/Class Mappings
Jump to navigation
Jump to search
This category contains definitions related to Class Mappings.
Related results can be found in Category:Class Mappings.
Let $V$ be a basic universe.
Let $A \subseteq V$ and $B \subseteq V$ be classes.
In the context of class theory, a mapping from $A$ into $B$ is a relation $f \subseteq A \times B$ such that:
- $\forall x \in A: \exists! y \in B: \tuple {x, y} \in f$
That is:
- $\forall x \in A: \forall y_1, y_2 \in B: \tuple {x, y_1} \in f \land \tuple {x, y_2} \in f \implies y_1 = y_2$
and
- $\forall x \in A: \exists y \in B: \tuple {x, y} \in f$
Pages in category "Definitions/Class Mappings"
The following 14 pages are in this category, out of 14 total.