Category:Definitions/Definite Integrals
This category contains definitions related to Definite Integrals.
Related results can be found in Category:Definite Integrals.
Let $\Delta$ be a finite subdivision of $\closedint a b$, $\Delta = \set {x_0, \ldots, x_n}$, $x_0 = a$ and $x_n = b$.
Let there for $\Delta$ be a corresponding sequence $C$ of sample points $c_i$, $C = \tuple {c_1, \ldots, c_n}$, where $c_i \in \closedint {x_{i - 1} } {x_i}$ for every $i \in \set {1, \ldots, n}$.
Let $\map S {f; \Delta, C}$ denote the Riemann sum of $f$ for the subdivision $\Delta$ and the sample point sequence $C$.
Then $f$ is said to be (properly) Riemann integrable on $\closedint a b$ if and only if:
- $\exists L \in \R: \forall \epsilon \in \R_{>0}: \exists \delta \in \R_{>0}: \forall$ finite subdivisions $\Delta$ of $\closedint a b: \forall$ sample point sequences $C$ of $\Delta: \norm \Delta < \delta \implies \size {\map S {f; \Delta, C} - L} < \epsilon$
where $\norm \Delta$ denotes the norm of $\Delta$.
The real number $L$ is called the Riemann integral of $f$ over $\closedint a b$ and is denoted:
- $\ds \int_a^b \map f x \rd x$
Pages in category "Definitions/Definite Integrals"
The following 16 pages are in this category, out of 16 total.
D
- Definition:Darboux Integrable Function
- Definition:Darboux Integral
- Definition:Darboux Integral/Geometric Interpretation
- Definition:Definite Integral
- Definition:Definite Integral/Darboux
- Definition:Definite Integral/Integrand
- Definition:Definite Integral/Limits of Integration
- Definition:Definite Integral/Limits of Integration/Lower Limit
- Definition:Definite Integral/Limits of Integration/Upper Limit
- Definition:Definite Integral/Riemann