Category:Definitions/Field Extensions
Jump to navigation
Jump to search
This category contains definitions related to Field Extensions.
Related results can be found in Category:Field Extensions.
Let $F$ be a field.
A field extension over $F$ is a field $E$ where $F \subseteq E$.
That is, such that $F$ is a subfield of $E$.
Pages in category "Definitions/Field Extensions"
The following 61 pages are in this category, out of 61 total.
A
- Definition:Algebraic Element of Field Extension
- Definition:Algebraic Element of Field Extension/Definition 1
- Definition:Algebraic Element of Field Extension/Definition 2
- Definition:Algebraic Field Extension
- Definition:Algebraic Number over Field/Degree
- Definition:Algebraic over Field
- Definition:Algebraically Closed Field
- Definition:Algebraically Closed Field/Definition 1
- Definition:Algebraically Closed Field/Definition 2
- Definition:Algebraically Closed Field/Definition 3
- Definition:Algebraically Independent
- Definition:Automorphism Group of Field Extension
F
G
I
N
P
R
S
- Definition:Separable Closure
- Definition:Separable Degree
- Definition:Separable Element
- Definition:Separable Extension
- Definition:Separably Closed Field
- Definition:Simple Algebraic Field Extension
- Definition:Simple Field Extension
- Definition:Smallest Field containing Subfield and Complex Number
- Definition:Smallest Field containing Subfield and Complex Number/General Definition
T
- Definition:Tower of Fields
- Definition:Transcendence Degree
- Definition:Transcendental
- Definition:Transcendental (Abstract Algebra)
- Definition:Transcendental (Abstract Algebra)/Field Extension
- Definition:Transcendental (Abstract Algebra)/Field Extension/Element
- Definition:Transcendental Element of Field Extension
- Definition:Transcendental Field Extension
- Definition:Transcendental over Field