Category:Definitions/Hilbert Cube

From ProofWiki
Jump to navigation Jump to search

This category contains definitions related to the Hilbert cube.
Related results can be found in Category:Hilbert Cube.


Definition 1

The Hilbert cube $\struct {I^\omega, d_2}$ is the subspace of the Hilbert sequence space $I^\omega$ defined as:

$\ds I^\omega = \prod_{k \mathop \in \N} \closedint 0 {\dfrac 1 k}$

under the same metric as that of the Hilbert sequence space:

$\ds \forall x = \sequence {x_i}, y = \sequence {y_i} \in I^\omega: \map {d_2} {x, y} := \paren {\sum_{k \mathop \ge 0} \paren {x_k - y_k}^2}^{\frac 1 2}$


Definition 2

The Hilbert cube, denoted by $I^\omega$, is defined as:

$\ds I^\omega := \set {\sequence {x_n}_{n \mathop \in \N} \in \R^\N: 0 \le x_n \le \frac 1 n}$

Pages in category "Definitions/Hilbert Cube"

The following 3 pages are in this category, out of 3 total.