Category:Definitions/Homogeneous Functions
Jump to navigation
Jump to search
This category contains definitions related to Homogeneous Functions.
Related results can be found in Category:Homogeneous Functions.
Let $V$ and $W$ be two vector spaces over a field $\GF$.
Let $f: V \to W$ be a function from $V$ to $W$.
Then $f$ is homogeneous of degree $n$ if and only if:
- $\map f {\alpha \mathbf v} = \alpha^n \map f {\mathbf v}$
for all nonzero $\mathbf v \in V$ and $\alpha \in \GF$.
Subcategories
This category has only the following subcategory.
Pages in category "Definitions/Homogeneous Functions"
The following 14 pages are in this category, out of 14 total.
H
- Definition:Homogeneous Differential Equation
- Definition:Homogeneous Function
- Definition:Homogeneous Function/Absolute Homogeneity
- Definition:Homogeneous Function/Degree
- Definition:Homogeneous Function/Positive Homogeneity
- Definition:Homogeneous Function/Real Space
- Definition:Homogeneous Function/Real Space/Degree
- Definition:Homogeneous Function/Real Space/Zero Degree
- Definition:Homogeneous Function/Zero Degree
- Definition:Homogeneous Real Function
- Definition:Homogeneous Real Function of Zero Degree