Category:Definitions/Inverse Hyperbolic Secant
Jump to navigation
Jump to search
This category contains definitions related to Inverse Hyperbolic Secant.
Related results can be found in Category:Inverse Hyperbolic Secant.
The inverse hyperbolic secant is a multifunction defined as:
- $\forall z \in \C_{\ne 0}: \map {\sech^{-1} } z := \set {w \in \C: z = \map \sech w}$
where $\map \sech w$ is the hyperbolic secant function.
Also see
Pages in category "Definitions/Inverse Hyperbolic Secant"
The following 17 pages are in this category, out of 17 total.
C
I
- Definition:Inverse Hyperbolic Secant
- Definition:Inverse Hyperbolic Secant/Also known as
- Definition:Inverse Hyperbolic Secant/Complex
- Definition:Inverse Hyperbolic Secant/Complex/Definition 1
- Definition:Inverse Hyperbolic Secant/Complex/Definition 2
- Definition:Inverse Hyperbolic Secant/Complex/Principal Branch
- Definition:Inverse Hyperbolic Secant/Real
- Definition:Inverse Hyperbolic Secant/Real/Definition 1
- Definition:Inverse Hyperbolic Secant/Real/Definition 2
- Definition:Inverse Hyperbolic Secant/Real/Principal Branch