Category:Definitions/Isometries
Jump to navigation
Jump to search
This category contains definitions related to Isometries in the context of Metric Space.
Related results can be found in Category:Isometries.
Let $M_1 = \tuple {A_1, d_1}$ and $M_2 = \tuple {A_2, d_2}$ be metric spaces or pseudometric spaces.
Let $\phi: A_1 \to A_2$ be a bijection such that:
- $\forall a, b \in A_1: \map {d_1} {a, b} = \map {d_2} {\map \phi a, \map \phi b}$
Then $\phi$ is called an isometry.
That is, an isometry is a distance-preserving bijection.
Subcategories
This category has only the following subcategory.
I
Pages in category "Definitions/Isometries"
The following 11 pages are in this category, out of 11 total.
I
- Definition:Isometric Isomorphism
- Definition:Isometry (Inner Product Spaces)
- Definition:Isometry (Metric Spaces)
- Definition:Isometry (Metric Spaces)/Definition 1
- Definition:Isometry (Metric Spaces)/Definition 2
- Definition:Isometry (Metric Spaces)/Into
- Definition:Isometry (Riemannian Manifolds)
- Definition:Isometry Group of Riemannian Manifold
- Definition:Isometry of Riemannian Manifold