Category:Definitions/Lp Metrics
Jump to navigation
Jump to search
This category contains definitions related to $L^p$ metrics.
Related results can be found in Category:Lp Metrics.
Let $S$ be the set of all real functions which are continuous on the closed interval $\left[{a \,.\,.\, b}\right]$.
Let $p \in \R_{\ge 1}$.
Let the real-valued function $d: S \times S \to \R$ be defined as:
- $\displaystyle \forall f, g \in S: d \left({f, g}\right) := \left({\int_a^b \left\vert{f \left({t}\right) - g \left({t}\right)}\right\vert^p \ \mathrm d t}\right)^{\frac 1 p}$
Then $d$ is the $L^p$ metric on $\left[{a \,.\,.\, b}\right]$.
Subcategories
This category has the following 2 subcategories, out of 2 total.
L
Pages in category "Definitions/Lp Metrics"
The following 2 pages are in this category, out of 2 total.