Category:Definitions/Open Balls
Jump to navigation
Jump to search
This category contains definitions related to open $\epsilon$-balls in the context of Metric Space.
Related results can be found in Category:Open Balls.
Let $M = \struct {A, d}$ be a metric space or pseudometric space.
Let $a \in A$.
Let $\epsilon \in \R_{>0}$ be a strictly positive real number.
The open $\epsilon$-ball of $a$ in $M$ is defined as:
- $\map {B_\epsilon} a := \set {x \in A: \map d {x, a} < \epsilon}$
If it is necessary to show the metric or pseudometric itself, then the notation $\map {B_\epsilon} {a; d}$ can be used.
Pages in category "Definitions/Open Balls"
The following 17 pages are in this category, out of 17 total.
O
- Definition:Open Ball
- Definition:Open Ball of Metric Space
- Definition:Open Ball of Normed Division Ring
- Definition:Open Ball of Pseudometric Space
- Definition:Open Ball/Also known as
- Definition:Open Ball/Center
- Definition:Open Ball/Normed Division Ring
- Definition:Open Ball/Normed Division Ring/Center
- Definition:Open Ball/Normed Division Ring/Radius
- Definition:Open Ball/P-adic Numbers
- Definition:Open Ball/P-adic Numbers/Center
- Definition:Open Ball/P-adic Numbers/Radius
- Definition:Open Ball/Radius
- Definition:Open Ball/Real Analysis
- Definition:Open Geodesic Ball in Riemannian Manifold