Category:Definitions/Semigroup Homomorphisms
Jump to navigation
Jump to search
This category contains definitions related to Semigroup Homomorphisms.
Related results can be found in Category:Semigroup Homomorphisms.
Let $\struct {S, \circ}$ and $\struct {T, *}$ be semigroups.
Let $\phi: S \to T$ be a mapping such that $\circ$ has the morphism property under $\phi$.
That is, $\forall a, b \in S$:
- $\map \phi {a \circ b} = \map \phi a * \map \phi b$
Then $\phi: \struct {S, \circ} \to \struct {T, *}$ is a semigroup homomorphism.
Subcategories
This category has the following 2 subcategories, out of 2 total.
Pages in category "Definitions/Semigroup Homomorphisms"
The following 8 pages are in this category, out of 8 total.