Category:Definitions/Symmetry (Relations)

From ProofWiki
Jump to navigation Jump to search

This category contains definitions related to Symmetry (Relations).


Let $\mathcal R \subseteq S \times S$ be a relation in $S$.


Symmetric

$\RR$ is symmetric if and only if:

$\tuple {x, y} \in \RR \implies \tuple {y, x} \in \RR$


Asymmetric

$\RR$ is asymmetric if and only if:

$\tuple {x, y} \in \RR \implies \tuple {y, x} \notin \RR$


Antisymmetric

$\RR$ is antisymmetric if and only if:

$\tuple {x, y} \in \RR \land \tuple {y, x} \in \RR \implies x = y$

that is:

$\set {\tuple {x, y}, \tuple {y, x} } \subseteq \RR \implies x = y$


Non-symmetric

$\RR$ is non-symmetric if and only if it is neither symmetric nor asymmetric.