Category:Definitions/Vandermonde Determinant
Jump to navigation
Jump to search
This category contains definitions related to Vandermonde Determinant.
Related results can be found in Category:Vandermonde Determinant.
The Vandermonde determinant of order $n$ is the determinant defined as one of the following two formulations:
Formulation 1
- $V_n = \begin {vmatrix} 1 & x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & {x_1}^{n - 1} \\ 1 & x_2 & {x_2}^2 & \cdots & {x_2}^{n - 2} & {x_2}^{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & {x_n}^2 & \cdots & {x_n}^{n - 2} & {x_n}^{n - 1} \end {vmatrix}$
Formulation 2
- $V_n = \begin {vmatrix} x_1 & {x_1}^2 & \cdots & {x_1}^n \\ x_2 & {x_2}^2 & \cdots & {x_2}^n \\ \vdots & \vdots & \ddots & \vdots \\ x_n & {x_n}^2 & \cdots & {x_n}^n \end{vmatrix}$
Pages in category "Definitions/Vandermonde Determinant"
The following 7 pages are in this category, out of 7 total.
V
- Definition:Vandermonde Determinant
- Definition:Vandermonde Determinant/Formulation 1
- Definition:Vandermonde Determinant/Formulation 1/Also presented as
- Definition:Vandermonde Determinant/Formulation 1/Also presented as/Ones at Right
- Definition:Vandermonde Determinant/Formulation 1/Also presented as/Ones at Top
- Definition:Vandermonde Determinant/Formulation 2
- Definition:Vandermonde Determinant/Formulation 2/Also presented as