# Category:Dirac Delta Function

This category contains results about the Dirac delta function.
Definitions specific to this category can be found in Definitions/Dirac Delta Function.

### Definition 1

Let $\epsilon \in \R_{>0}$ be a (strictly) positive real number.

Consider the real function $F_\epsilon: \R \to \R$ defined as:

$\map {F_\epsilon} x := \begin{cases} 0 & : x < 0 \\ \dfrac 1 \epsilon & : 0 \le x \le \epsilon \\ 0 & : x > \epsilon \end{cases}$

The Dirac delta function is defined as:

$\map \delta x := \ds \lim_{\epsilon \mathop \to 0} \map {F_\epsilon} x$

### Definition 2

Let $\epsilon \in \R_{>0}$ be a (strictly) positive real number.

Consider the real function $F_\epsilon: \R \to \R$ defined as:

$\map {F_\epsilon} x := \begin {cases} 0 & : x < -\epsilon \\ \dfrac 1 {2 \epsilon } & : -\epsilon \le x \le \epsilon \\ 0 & : x > \epsilon \end {cases}$

The Dirac delta function is defined as:

$\map \delta x = \ds \lim_{\epsilon \mathop \to 0} \map {F_\epsilon} x$

## Subcategories

This category has the following 2 subcategories, out of 2 total.

## Pages in category "Dirac Delta Function"

The following 16 pages are in this category, out of 16 total.