Category:Divisors
Jump to navigation
Jump to search
This category contains results about Divisors in the context of Algebra.
Definitions specific to this category can be found in Definitions/Divisors.
Let $\struct {\Z, +, \times}$ be the ring of integers.
Let $x, y \in \Z$.
Then $x$ divides $y$ is defined as:
- $x \divides y \iff \exists t \in \Z: y = t \times x$
Subcategories
This category has the following 23 subcategories, out of 23 total.
A
C
D
E
F
G
I
M
P
S
Pages in category "Divisors"
The following 65 pages are in this category, out of 65 total.
A
C
D
- Divides is Reflexive
- Divisibility of Elements of Pythagorean Triple by 7
- Divisibility of Fibonacci Number
- Divisibility of Fibonacci Number/Corollary
- Divisibility of Product of Consecutive Integers
- Division Theorem
- Divisor Divides Multiple
- Divisor is Reciprocal of Divisor of Integer
- Divisor of Sum of Coprime Integers
- Divisor Relation is Antisymmetric
- Divisor Relation is Transitive
- Divisor Relation on Positive Integers is Partial Ordering
- Divisors obey Distributive Law
- Divisors of Factorial
- Divisors of Negative Values
- Divisors of One
I
- Integer Divided by Divisor is Integer
- Integer Divides its Absolute Value
- Integer Divides its Negative
- Integer Divides Itself
- Integer Divides Zero
- Integer Divisor Results
- Integer Divisor Results/Divisors of Negative Values
- Integer Divisor Results/Integer Divides its Absolute Value
- Integer Divisor Results/Integer Divides its Negative
- Integer Divisor Results/Integer Divides Itself
- Integer Divisor Results/Integer Divides Zero
- Integer Divisor Results/One Divides all Integers
N
- Natural Number is Divisor or Multiple of Divisor of Another
- Non-Zero Integer has Finite Number of Divisors
- Number divides Number iff Cube divides Cube
- Number divides Number iff Square divides Square
- Number does not divide Number iff Cube does not divide Cube
- Number does not divide Number iff Square does not divide Square
O
P
S
- Sequence of Numbers Divisible by Sequence of Primes
- Set of 3 Integers each Divisor of Sum of Other Two
- Set of Common Divisors of Integers is not Empty
- Smallest Integer Divisible by All Numbers from 1 to 100
- Square Divides Product of Multiples
- Subtraction of Multiples of Divisors obeys Distributive Law
- Sum of Squares of Divisors of 24 and 26 are Equal
- Sum Over Divisors Equals Sum Over Quotients
- Summation of Summation over Divisors of Function of Two Variables