Category:Dynkin Systems
Jump to navigation
Jump to search
This category contains results about Dynkin Systems.
Definitions specific to this category can be found in Definitions/Dynkin Systems.
Let $X$ be a set, and let $\DD \subseteq \powerset X$ be a collection of subsets of $X$.
Then $\DD$ is called a Dynkin system (on $X$) if and only if it satisfies the following conditions:
- $(1): \quad X \in \DD$
- $(2): \quad \forall D \in \DD: X \setminus D \in \DD$
- $(3): \quad$ For all pairwise disjoint sequences $\sequence {D_n}_{n \mathop \in \N}$ in $\DD$, $\ds \bigcup_{n \mathop \in \N} D_n \in \DD$
Pages in category "Dynkin Systems"
The following 8 pages are in this category, out of 8 total.