Category:Euler-Mascheroni Constant

From ProofWiki
Jump to navigation Jump to search

This category contains results about the Euler-Mascheroni constant.
Definitions specific to this category can be found in Definitions/Euler-Mascheroni Constant.

The Euler-Mascheroni constant $\gamma$ is the real number that is defined as:

\(\displaystyle \gamma\) \(:=\) \(\displaystyle \lim_{n \mathop \to +\infty} \paren {\sum_{k \mathop = 1}^n \frac 1 k - \int_1^n \frac 1 x \rd x}\)
\(\displaystyle \) \(=\) \(\displaystyle \lim_{n \mathop \to +\infty} \paren {H_n - \ln n}\)

where $H_n$ is the harmonic series and $\ln$ is the natural logarithm.