Category:Examples of Binomial Coefficients
Jump to navigation
Jump to search
This category contains examples of Binomial Coefficient/Integers/Definition 1.
Let $n \in \Z_{\ge 0}$ and $k \in \Z$.
Then the binomial coefficient $\dbinom n k$ is defined as:
- $\dbinom n k = \begin {cases} \dfrac {n!} {k! \paren {n - k}!} & : 0 \le k \le n \\ & \\ 0 & : \text { otherwise } \end{cases}$
where $n!$ denotes the factorial of $n$.
Subcategories
This category has the following 2 subcategories, out of 2 total.
Z
- Zero Choose Zero (3 P)
Pages in category "Examples of Binomial Coefficients"
The following 25 pages are in this category, out of 25 total.
B
- Binomial Coefficient of Half
- Binomial Coefficient of Half/Corollary
- Binomial Coefficient of Minus Half
- Binomial Coefficient of Real Number with Half
- Binomial Coefficient with One
- Binomial Coefficient with Self
- Binomial Coefficient with Self minus One
- Binomial Coefficient with Two
- Binomial Coefficient with Two/Corollary
- Binomial Coefficient with Zero
- Binomial Coefficient with Zero/Integer Coefficients
- Binomial Coefficient/Examples
- Binomial Coefficient/Examples/2 from -5
- Binomial Coefficient/Examples/2 from 5
- Binomial Coefficient/Examples/3 from 7
- Binomial Coefficient/Examples/3 from 8
- Binomial Coefficient/Examples/4 from 52
- Binomial Coefficient/Examples/5 from -2
- Binomial Coefficient/Examples/5 from 2
- Binomial Coefficient/Examples/Number of Bridge Hands
- Binomial Coefficient/Examples/Number of Bridge Hands/Prime Factors