# Category:Examples of Linear First Order ODEs

Jump to navigation
Jump to search

This category contains examples of Linear First Order ODE.

A **linear first order ordinary differential equation** is a differential equation which is in (or can be manipulated into) the form:

- $\dfrac {\d y} {\d x} + \map P x y = \map Q x$

where $\map P x$ and $\map Q x$ are functions of $x$.

## Also see

## Subcategories

This category has the following 4 subcategories, out of 4 total.

## Pages in category "Examples of Linear First Order ODEs"

The following 29 pages are in this category, out of 29 total.

### F

### L

- Linear First Order ODE/(1 + x^2) dy + 2 x y dx = cotangent x dx
- Linear First Order ODE/(1 + x^2) y' + 2 x y = 4 x^3
- Linear First Order ODE/(2 y - x^3) dx = x dy
- Linear First Order ODE/(x^2 + y) dx = x dy
- Linear First Order ODE/dy = f(x) dx
- Linear First Order ODE/dy = f(x) dx/Initial Condition
- Linear First Order ODE/x dy + y dx = x cosine x dx
- Linear First Order ODE/x y' + y = f (x)
- Linear First Order ODE/x y' + y = x^2 cosine x
- Linear First Order ODE/x y' - 3 y = x^4
- Linear First Order ODE/y' + (y over x) = 3 x
- Linear First Order ODE/y' + (y over x) = k x^n
- Linear First Order ODE/y' + 2 x y = exp -x^2
- Linear First Order ODE/y' + 2y = cos x
- Linear First Order ODE/y' + y = 1 over (1 + exp 2 x)
- Linear First Order ODE/y' + y = 2 x exp -x + x^2
- Linear First Order ODE/y' + y = sech x
- Linear First Order ODE/y' + y cot x = 2 x cosec x
- Linear First Order ODE/y' - (y over x) = 3 x
- Linear First Order ODE/y' - (y over x) = k x
- Linear First Order ODE/y' - y = e^x/y(0) = 0
- Linear First Order ODE/y' - y = x^2
- Linear First Order ODE/y' = x + y
- Linear First Order ODE/y' = x + y/y(0) = 1