Category:Fubini's Theorem
Jump to navigation
Jump to search
This category contains pages concerning Fubini's Theorem:
Let $\struct {X, \Sigma_X, \mu}$ and $\struct {Y, \Sigma_Y, \nu}$ be $\sigma$-finite measure spaces.
Let $\struct {X \times Y, \Sigma_X \otimes \Sigma_Y, \mu \times \nu}$ be the product measure space of $\struct {X, \Sigma_X, \mu}$ and $\struct {Y, \Sigma_Y, \nu}$.
Let $f: X \times Y \to \overline \R$ be a $\mu \times \nu$-integrable function.
Define a function $I_f : X \to \R$ by:
- $\ds \map {I_f} x = \begin{cases}\ds \int_Y f_x \rd \nu & \text {if } f_x \text { is } \nu\text{-integrable} \\ 0 & \text{otherwise}\end{cases}$
for each $x \in X$.
Define a function $J_f : Y \to \R$ by:
- $\ds \map {J_f} y = \begin{cases}\ds \int_X f^y \rd \mu & \text {if } f^y \text { is } \mu\text{-integrable} \\ 0 & \text{otherwise}\end{cases}$
for each $y \in Y$.
Then:
- $I_f$ is $\mu$-integrable and $J_f$ is $\nu$-integrable
and:
- $\ds \int_{X \times Y} f \map \rd {\mu \times \nu} = \int_X I_f \rd \mu = \int_Y J_f \rd \nu$
Source of Name
This entry was named for Guido Fubini.
Pages in category "Fubini's Theorem"
The following 2 pages are in this category, out of 2 total.