Category:Inverse Hyperbolic Secant

From ProofWiki
Jump to navigation Jump to search

This category contains results about Inverse Hyperbolic Secant.
Definitions specific to this category can be found in Definitions/Inverse Hyperbolic Secant.

The inverse hyperbolic secant is a multifunction defined as:

$\forall z \in \C_{\ne 0}: \map {\sech^{-1} } z := \set {w \in \C: z = \map \sech w}$

where $\map \sech w$ is the hyperbolic secant function.

Also see