Category:Inverse Hyperbolic Secant

From ProofWiki
Jump to navigation Jump to search

This category contains results about Inverse Hyperbolic Secant.
Definitions specific to this category can be found in Definitions/Inverse Hyperbolic Secant.

The inverse hyperbolic secant is a multifunction defined as:

$\forall z \in \C_{\ne 0}: \operatorname{sech}^{-1} \left({z}\right) := \left\{{w \in \C: z = \operatorname{sech} \left({w}\right)}\right\}$

where $\operatorname{sech} \left({w}\right)$ is the hyperbolic secant function.

Also see