Category:Linear Independence
This category contains results about Linear Independence.
Definitions specific to this category can be found in Definitions/Linear Independence.
Let $G$ be an abelian group whose identity is $e$.
Let $R$ be a ring with unity whose zero is $0_R$ and whose unity is $1_R$.
Let $\struct {G, +_G, \circ}_R$ be a unitary $R$-module.
Sequence
Let $\sequence {a_n}$ be a sequence of elements of $G$ such that:
- $\ds \forall \sequence {\lambda_n} \subseteq R: \sum_{k \mathop = 1}^n \lambda_k \circ a_k = e \implies \lambda_1 = \lambda_2 = \cdots = \lambda_n = 0_R$
That is, the only way to make $e$ with a linear combination of $\sequence {a_n}$ is by making all the terms of $\sequence {\lambda_n}$ equal to $0_R$.
Such a sequence is linearly independent.
Linearly Independent Sequence on a Real Vector Space
Let $\struct {\R^n, +, \cdot}_\R$ be a real vector space.
Let $\sequence {\mathbf v_n}$ be a sequence of vectors in $\R^n$.
Then $\sequence {\mathbf v_n}$ is linearly independent if and only if:
- $\ds \forall \sequence {\lambda_n} \subseteq \R: \sum_{k \mathop = 1}^n \lambda_k \mathbf v_k = \mathbf 0 \implies \lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$
where $\mathbf 0 \in \R^n$ is the zero vector and $0 \in \R$ is the zero scalar.
Set
Let $S \subseteq G$.
Then $S$ is a linearly independent set (over $R$) if and only if every finite sequence of distinct terms in $S$ is a linearly independent sequence.
That is, such that:
- $\ds \forall \sequence {\lambda_n} \subseteq R: \sum_{k \mathop = 1}^n \lambda_k \circ a_k = e \implies \lambda_1 = \lambda_2 = \cdots = \lambda_n = 0_R$
where $a_1, a_2, \ldots, a_k$ are distinct elements of $S$.
Linearly Independent Set on a Real Vector Space
Let $\struct {\R^n, +, \cdot}_\R$ be a real vector space.
Let $S \subseteq \R^n$.
Then $S$ is a linearly independent set of real vectors if and only if every finite sequence of distinct terms in $S$ is a linearly independent sequence.
That is, such that:
- $\ds \forall \set {\lambda_k: 1 \le k \le n} \subseteq \R: \sum_{k \mathop = 1}^n \lambda_k \mathbf v_k = \mathbf 0 \implies \lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$
where $\mathbf v_1, \mathbf v_2, \ldots, \mathbf v_n$ are distinct elements of $S$.
Linearly Independent Set on a Complex Vector Space
Let $\struct {\C^n, +, \cdot}_\C$ be a complex vector space.
Let $S \subseteq \C^n$.
Then $S$ is a linearly independent set of complex vectors if and only if every finite sequence of distinct terms in $S$ is a linearly independent sequence.
That is, such that:
- $\ds \forall \set {\lambda_k: 1 \le k \le n} \subseteq \C: \sum_{k \mathop = 1}^n \lambda_k \mathbf v_k = \mathbf 0 \implies \lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$
where $\mathbf v_1, \mathbf v_2, \ldots, \mathbf v_n$ are distinct elements of $S$.
Subcategories
This category has only the following subcategory.
S
Pages in category "Linear Independence"
The following 14 pages are in this category, out of 14 total.