Category:Linear Ring Actions

From ProofWiki
Jump to navigation Jump to search

This category contains results about Linear Ring Actions.
Definitions specific to this category can be found in Definitions/Linear Ring Actions.


Let $R$ be a ring.

Let $M$ be an abelian group.


Left Ring Action

A (left) linear ring action of $R$ on $M$ is a mapping from the cartesian product $\circ : R \times M \to M$ such that:

\((1)\)   $:$     \(\displaystyle \forall \lambda \in R: \forall m, n \in M:\)    \(\displaystyle \lambda \circ \paren {m + n} \)   \(\displaystyle = \)   \(\displaystyle \paren {\lambda \circ m} + \paren {\lambda \circ n} \)             
\((2)\)   $:$     \(\displaystyle \forall \lambda, \mu \in R: \forall m \in M:\)    \(\displaystyle \paren {\lambda + \mu} \circ m \)   \(\displaystyle = \)   \(\displaystyle \paren {\lambda \circ m} + \paren {\mu \circ m} \)             
\((3)\)   $:$     \(\displaystyle \forall \lambda, \mu \in R: \forall m \in M:\)    \(\displaystyle \paren {\lambda \mu} \circ m \)   \(\displaystyle = \)   \(\displaystyle \lambda \circ \paren {\mu \circ m} \)             


Right Ring Action

A right linear ring action of $R$ on $M$ is a mapping from the cartesian product $\circ : M \times R \to M$ such that:

\((1)\)   $:$     \(\displaystyle \forall \lambda \in R: \forall m, n \in M:\)    \(\displaystyle \paren {m + n} \circ \lambda \)   \(\displaystyle = \)   \(\displaystyle \paren {m \circ \lambda} + \paren {n \circ \lambda} \)             
\((2)\)   $:$     \(\displaystyle \forall \lambda, \mu \in R: \forall m \in M:\)    \(\displaystyle m \circ \paren {\lambda + \mu} \)   \(\displaystyle = \)   \(\displaystyle \paren {m \circ \lambda} + \paren {m \circ \mu} \)             
\((3)\)   $:$     \(\displaystyle \forall \lambda, \mu \in R: \forall m \in M:\)    \(\displaystyle m \circ \paren {\lambda\mu} \)   \(\displaystyle = \)   \(\displaystyle \paren {m \circ \lambda} \circ \mu \)             

This category currently contains no pages or media.