Category:Monic Polynomials

From ProofWiki
Jump to navigation Jump to search

This category contains results about Monic Polynomials.
Definitions specific to this category can be found in Definitions/Monic Polynomials.


Let $R$ be a commutative ring with unity.

Let $f \in R \sqbrk x$ be a polynomial in one variable over $R$.


Then $f$ is monic if and only if $f$ is nonzero and its leading coefficient is $1$.

Pages in category "Monic Polynomials"

This category contains only the following page.