Category:Normality in Groups

From ProofWiki
Jump to navigation Jump to search

This category contains results about Normality in Groups in the context of Group Theory.
Definitions specific to this category can be found in Definitions/Normality in Groups.


Let $G$ be a group.

Let $N$ be a subgroup of $G$.


$N$ is a normal subgroup of $G$ if and only if:


Definition 1

$\forall g \in G: g \circ N = N \circ g$


Definition 2

Every right coset of $N$ in $G$ is a left coset

that is:

The right coset space of $N$ in $G$ equals its left coset space.


Definition 3

$\forall g \in G: g \circ N \circ g^{-1} \subseteq N$
$\forall g \in G: g^{-1} \circ N \circ g \subseteq N$


Definition 4

$\forall g \in G: N \subseteq g \circ N \circ g^{-1}$
$\forall g \in G: N \subseteq g^{-1} \circ N \circ g$


Definition 5

$\forall g \in G: g \circ N \circ g^{-1} = N$
$\forall g \in G: g^{-1} \circ N \circ g = N$


Definition 6

$\forall g \in G: \paren {n \in N \iff g \circ n \circ g^{-1} \in N}$
$\forall g \in G: \paren {n \in N \iff g^{-1} \circ n \circ g \in N}$


Definition 7

$N$ is a normal subset of $G$.

Subcategories

This category has the following 7 subcategories, out of 7 total.

N

S