Category:Normality in Groups
Jump to navigation
Jump to search
This category contains results about Normality in Groups in the context of Group Theory.
Definitions specific to this category can be found in Definitions/Normality in Groups.
Let $G$ be a group.
Let $N$ be a subgroup of $G$.
$N$ is a normal subgroup of $G$ if and only if:
Definition 1
- $\forall g \in G: g \circ N = N \circ g$
Definition 2
- Every right coset of $N$ in $G$ is a left coset
that is:
- The right coset space of $N$ in $G$ equals its left coset space.
Definition 3
- $\forall g \in G: g \circ N \circ g^{-1} \subseteq N$
- $\forall g \in G: g^{-1} \circ N \circ g \subseteq N$
Definition 4
- $\forall g \in G: N \subseteq g \circ N \circ g^{-1}$
- $\forall g \in G: N \subseteq g^{-1} \circ N \circ g$
Definition 5
- $\forall g \in G: g \circ N \circ g^{-1} = N$
- $\forall g \in G: g^{-1} \circ N \circ g = N$
Definition 6
- $\forall g \in G: \paren {n \in N \iff g \circ n \circ g^{-1} \in N}$
- $\forall g \in G: \paren {n \in N \iff g^{-1} \circ n \circ g \in N}$
Definition 7
- $N$ is a normal subset of $G$.
Subcategories
This category has the following 7 subcategories, out of 7 total.
G
- Generated Normal Subgroups (empty)
N
S
- Subnormal Subgroups (empty)
W
- Weakly Abnormal Subgroups (empty)
- Weakly Pronormal Subgroups (empty)