# Category:Open Mappings

Jump to navigation
Jump to search

This category contains results about Open Mappings.

Let $\struct {S_1, \tau_1}$ and $\struct {S_2, \tau_2}$ be topological spaces.

Let $f: S_1 \to S_2$ be a mapping.

Then $f$ is said to be an **open mapping** if and only if:

- $\forall U \in \tau_1: f \sqbrk U \in \tau_2$

where $f \sqbrk U$ denotes the image of $U$ under $f$.

## Subcategories

This category has only the following subcategory.

## Pages in category "Open Mappings"

The following 12 pages are in this category, out of 12 total.