Category:Orientation of Complex Contour

From ProofWiki
Jump to navigation Jump to search

This category contains results about Orientation of Complex Contour.
Definitions specific to this category can be found in Definitions/Orientation of Complex Contour.

Let $C$ be a contour in the complex plane $\C$ with parameterization $\gamma: \closedint a b \to \C$.

Set $K := \set { t \in \closedint a b : \textrm{ $\gamma$ is not differentiable at $t$ } }$.

Positively Oriented Contour

Let $D \subseteq \C$ be a connected domain.

Let $\Img C \subseteq \partial D$, where $\Img C$ denotes the image of $C$, and $\partial D$ denotes the boundary of $D$.


Then $C$ is positively oriented with respect to $D$, if and only if for all $t \in \openint a b \setminus K$, there exists $r \in \R_{>0}$ such that:

for all $\epsilon \in \openint 0 r$ : $\map \gamma t + \epsilon i \map {\gamma'} t \in D$, and $\map \gamma t - \epsilon i \map {\gamma'} t \notin D$

Positively Oriented Simple Closed Contour

Let $C$ be a simple closed contour in the complex plane $\C$ with parameterization $\gamma: \closedint a b \to \C$.

Let $\Int C$ denote the interior of $C$


Then $C$ is positively oriented, if and only if for all $t \in \openint a b \setminus K$, there exists $r \in \R_{>0}$ such that:

for all $\epsilon \in \openint 0 r$ : $\map \gamma t + \epsilon i \map {\gamma'} t \in \Int C$


Negatively Oriented Contour

Let $D \subseteq \C$ be a connected domain.

Let $\Img C \subseteq \partial D$, where $\Img C$ denotes the image of $C$, and $\partial D$ denotes the boundary of $D$.


Then $C$ is negatively oriented with respect to $D$, if and only if for all $t \in \openint a b \setminus K$, there exists $r \in \R_{>0}$ such that:

for all $\epsilon \in \openint 0 r$ : $\map \gamma t - \epsilon i \map {\gamma'} t \in D$, and $\map \gamma t + \epsilon i \map {\gamma'} t \notin D$

Negatively Oriented Simple Closed Contour

Let $C$ be a simple closed contour in the complex plane $\C$ with parameterization $\gamma: \closedint a b \to \C$.

Let $\Int C$ denote the interior of $C$


Then $C$ is negatively oriented, if and only if for all $t \in \openint a b \setminus K$, there exists $r \in \R_{>0}$ such that:

for all $\epsilon \in \openint 0 r$ : $\map \gamma t - \epsilon i \map {\gamma'} t \in \Int C$