Category:Pointwise Scalar Multiplication
Jump to navigation
Jump to search
This category contains results about Pointwise Scalar Multiplication.
Definitions specific to this category can be found in Definitions/Pointwise Scalar Multiplication.
Let $\struct {R, +_R, \times_R}$ be a ring.
Let $\struct {S, \circ}_R$ be an $R$-algebraic structure.
Let $X$ be a non-empty set.
Let $S^X$ be the set of all mappings from $X$ to $S$.
Then pointwise ($R$)-scalar multiplication on $S^X$ is the binary operation $\circ: R \times S^X \to S^X$ (the $\circ$ is the same as for $S$) defined by:
- $\forall \lambda \in R: \forall f \in S^X: \forall x \in X: \map {\paren {\lambda \circ f} } x := \lambda \circ \map f x$
This category currently contains no pages or media.