# Category:Quotient Fields

This category contains results about Quotient Fields.

A **quotient field** of $D$ is a pair $(F,\iota)$ where:

- $(1): \quad$ $F$ is a field
- $(2): \quad$ $\iota : D \to F$ is a ring monomorphism
- $(3): \quad \forall z \in F: \exists x \in D, y \in D_{\neq 0}: z = \dfrac {\iota \left({x}\right)} {\iota \left({y}\right)}$

## Pages in category "Quotient Fields"

The following 10 pages are in this category, out of 10 total.