Category:Quotient Rule for Derivatives

From ProofWiki
Jump to navigation Jump to search

This category contains pages concerning Quotient Rule for Derivatives:


Let $\map j x, \map k x$ be real functions defined on the open interval $I$.

Let $\xi \in I$ be a point in $I$ at which both $j$ and $k$ are differentiable.


Define the real function $f$ on $I$ by:

$\ds \map f x = \begin{cases}

\dfrac {\map j x} {\map k x} & : \map k x \ne 0 \\ 0 & : \text{otherwise} \end{cases}$


Then, if $\map k \xi \ne 0$, $f$ is differentiable at $\xi$, and furthermore:

$\map {f'} \xi = \dfrac {\map {j'} \xi \map k \xi - \map j \xi \map {k'} \xi} {\paren {\map k \xi}^2}$


It follows from the definition of derivative that if $j$ and $k$ are both differentiable on the interval $I$, then:

$\ds \forall x \in I: \map k x \ne 0 \implies \map {f'} x = \frac {\map {j'} x \map k x - \map j x \map {k'} x} {\paren {\map k x}^2}$

Subcategories

This category has only the following subcategory.

Pages in category "Quotient Rule for Derivatives"

The following 2 pages are in this category, out of 2 total.