# Category:Residue Classes

This category contains results about Residue Classes.
Definitions specific to this category can be found in Definitions/Residue Classes.

Let $m \in \Z_{>0}$ be a (strictly) positive integer.

Let $\RR_m$ be the congruence relation modulo $m$ on the set of all $a, b \in \Z$:

$\RR_m = \set {\tuple {a, b} \in \Z \times \Z: \exists k \in \Z: a = b + k m}$

We have that congruence modulo $m$ is an equivalence relation.

So for any $m \in \Z$, we denote the equivalence class of any $a \in \Z$ by $\eqclass a m$, such that:

 $\ds \eqclass a m$ $=$ $\ds \set {x \in \Z: a \equiv x \pmod m}$ $\ds$ $=$ $\ds \set {x \in \Z: \exists k \in \Z: x = a + k m}$ $\ds$ $=$ $\ds \set {\ldots, a - 2 m, a - m, a, a + m, a + 2 m, \ldots}$

The equivalence class $\eqclass a m$ is called the residue class of $a$ (modulo $m$).

## Subcategories

This category has the following 3 subcategories, out of 3 total.

## Pages in category "Residue Classes"

The following 8 pages are in this category, out of 8 total.