# Category:Reversals

Jump to navigation
Jump to search

This category contains results about **Reversals**.

Let $m = \sqbrk {a_n a_{n - 1} a_{n - 2} \ldots a_2 a_1 a_0}$ be an integer expressed in base $10$.

That is:

- $m = \ds \sum_{k \mathop = 0}^n a_k 10^k$

Its **reversal** $m'$ is the integer created by writing the digits of $m$ in the opposite order:

- $m' = \sqbrk {a_0 a_1 a_2 \ldots a_{n - 2} a_{n - 1} a_n}$

That is:

- $m' = \ds \sum_{k \mathop = 0}^n a_{n - k} 10^k$

## Subcategories

This category has only the following subcategory.

### R

## Pages in category "Reversals"

The following 12 pages are in this category, out of 12 total.